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ABSTRACT

Excess Gibbs energy models which are widely used in modelling thermodynamic prop-

erties of multicomponent liquid phases are based on the assumption that long-range

density or concentration fluctuations can be neglected. This assumption is no longer

valid near a system’s critical point, where large density or concentration fluctuations

effectively mask the identity of the system and produce universal phenomena which

have been well studied in simple liquid-vapor and liquid-liquid systems. Based on the

Landau-Ginzburg-Wilson theory of fluctuations we have developed a crossover pro-

cedure to incorporate the effects of critical fluctuations into a classical excess Gibbs

energy model. As an example we have applied our crossover procedure to the Non-

Random Two-Liquid (NRTL) excess Gibbs energy model. This crossover procedure

involves the use of transformed variables for temperature and concentration and adding

a fluctuation term to the classical excess Gibbs energy. The resulting transformed

Gibbs energy has the universal scaling behavior near the consolute critical point and

has a smooth crossover to classical behavior far away from the consolute critical point.

KEY WORDS: critical phenomena; Gibbs free energy; isobaric binary mixtures;

liquid-liquid equilibrium; NRTL model.
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1. INTRODUCTION

Liquid-liquid equilibria play an important role in the chemical industry. In an

attempt to describe liquid-liquid equilibria in fluids, various phenomenological and

semi-theoretical models have been proposed in the chemical engineering literature.

Some commonly used models are the regular solution model, the Wilson model, the

NRTL model, and UNIQUAC [1]. All these models are classical (mean-field) in nature

and they fail to account for the effects of long-range concentration fluctuations in the

vicinity of a consolute critical point. Classical models predict power-law behavior with

classical critical exponents and these draw backs are now well understood [2].

In an attempt to describe both the critical region and the region remote from

the critical point, various modifications of classical equations have been proposed.

De Pablo and Prausnitz [3] have proposed a phenomenological correction to classical

equations and have shown good representation of liquid-liquid equilibria in some binary

and ternary systems. To account for non-classical behavior, De Pablo and Prausnitz

[4, 5] have also have applied a transformation proposed by Fox [6], and extended it

to binary and ternary system. Since Fox’s method uses field variables explicitly, the

methodology is less transparent and it is computationally intense [4, 5]. In addition

this transformation fails to reproduce correct universal amplitude ratios asymptotically

close to the critical point [7].

A systematic way of incorporating long-range fluctuations into a classical equa-

tion can be developed on the basis of renormalization-group theory [8]. Specifically,

Chen and coworkers have shown how long-range fluctuations can be incorporated in

a Landau-type expansion [9, 10, 11]. The simplicity and the physical appeal of this

method is its transformation of the temperature and the order-parameter variable.

The approach has been extended to the Carnahan-Starling-DeSantes equation of state

[12, 13]. In this paper, a general transformation of the temperature and the mole
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fraction variable in Gibbs energy models for liquid-liquid equilibria is proposed. This

transformation can be applied to any classical Gibbs energy model. The transformed

Gibbs energy model has the correct singular behavior in the vicinity of the consolute

critical point and has a smooth crossover to classical behavior far away from the con-

solute critical point.

2. THERMODYNAMIC POTENTIAL

For a binary liquid mixture containing components 1 and 2, the molar Gibbs free

energy satisfies a differential relation of the form

dg = −sdT + vdp+ µ1dx1 + µ2dx2, (1)

where s is the molar entropy, T is the temperature, v is the molar volume, p is the

pressure, µi is the chemical potential of component i, and xi is the mole fraction of

component i. For a system at constant pressure Eq. (1) can be written as

dg = −sdT + µ21dx2, (2)

where µ21 = µ2-µ1. Here the thermodynamic potential, the molar Gibbs free energy

g(T, x2), is a function of a density x2 and a field T .

Binary liquid-liquid mixtures near a consolute point and pure fluids near a vapor-

liquid critical point belong to the same universality class as the 3-dimensional Ising

model [2, 14]. Close to the critical point, large density or/and concentration fluctu-

ations effectively mask the microscopic identity of the system and produce universal

phenomena. Near a consolute point of a binary mixture, the difference in the concen-

tration of either component in the two coexisting liquid phases at constant pressure

asymptotically behaves as:

x
′′
− x

′
= ±2B

∣∣∣T − Tc

Tc

∣∣∣β (3)
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where Tc is the consolute temperature, β is a critical exponent and B is a system

dependent coefficient. Another property that is readily accessible to experiments is

the osmotic susceptibility, which is defined as:(
∂x1

∂µ1

)
P,T

= −

(
∂x2

∂µ1

)
P,T

=

{
x2

(
∂2g

∂x2
2

)
P,T

}−1

, (4)

and which diverges asymptotically as

x2

(
∂x1

∂µ1

)
P,T

= ±Γ
∣∣∣T − Tc

Tc

∣∣∣−γ along x = xc as T → Tc. (5)

Here γ is a critical exponent, xc is the critical concentration and Γ is a system-

dependent coefficient.

3. EXCESS GIBBS FUNCTION

In this work the reduced molar Gibbs energy of mixing ∆g/RT is used as a gener-

ating function:

∆g

RT
= x1 lnx1 + x2 lnx2 +

gE

RT
(6)

where R is the universal gas constant and gE is the excess Gibbs energy. One gE model

which is widely used to describe partially miscible systems is the NRTL equation [15]:

gE

RT
= x1x2

[
τ21G21

x1 + x2G21
+

τ12G12

x1 + x2G12

]
(7)

τ21 =
g21 − g11

RT
, τ12 =

g12 − g22

RT

G21 = exp(−α12τ21) , G12 = exp(−α12τ12). (8)

Here gij is an energy parameter characteristic of the i-j interaction. The parameter

α12 is related to the nonrandomness in the mixture. When α12 is zero, the mixture is

completely random and Eq.(7) reduces to the regular solution model. This equation

has three parameters τ21, τ12, and α12, but α12 is generally fixed at a value between

4



0.2 to 0.470.

4. CLASSICAL MOLAR GIBBS FREE-ENERGY OF MIXING

For a complete specification of the thermodynamic properties, the reduced molar

Gibbs free-energy of mixing as a function of mole fraction and temperature is considered

here. All variables used here are made dimensionless.

T̃ = −
Tc

T
, x̃ =

x

xc
, g̃ =

g

RT
, µ̃ =

µ

RT

∆T̃ = T̃ + 1, ∆x̃ = x̃− 1. (9)

In terms of these reduced variables, the NRTL parameters in Eq. (8) can be rewritten

as:

τ21 =
g21 − g11

RT
= ã(1− b̃∆T̃ )

τ12 =
g12 − g22

RT
= c̃(1− d̃∆T̃ ) (10)

By applying the conditions of incipient immiscibility at the consolute point(
∂2∆g

∂x2

) ∣∣∣
x=xc

=

(
∂3∆g

∂x3

) ∣∣∣
x=xc

= 0, (11)

the number of parameters can be reduced by two. For the NRTL equation, ã = 1.3474

and c̃ = 0.94366.

This classical molar Gibbs free-energy of mixing is valid everywhere except near

the consolute point. Near this point, the thermodynamic properties calculated from

classical equation exhibit power-laws, Eqs. (3) and (5), with classical exponent values

β = 0.5 and γ = 1.0. Experiments and renormalization group calculations show β

= 0.325 and γ = 1.24 [16]. In order to reproduce the correct singular behavior the

free-energy is separated into a regular and a singular part.

∆g̃(x̃, T̃ ) = ∆g̃reg(x̃ = 1, T̃ ) + ∆g̃sing(x̃, T̃ ) (12)
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The regular part is an analytic function of T̃ and the singular part is responsible for

the non-analytic behavior near the critical point.

This separation of the Gibbs free-energy of mixing can be accomplished by expand-

ing ∆g̃ around the consolute point:

∆g̃(x̃, T̃ ) = ∆g̃(x̃ = 1, T̃ ) +
∂

∂x̃
(∆g̃)

∣∣∣
x̃=1

(x̃− 1) +
1

2!

∂2

∂x̃2
(∆g̃)

∣∣∣
x̃=1

(x̃− 1)2 + · · · (13)

In this expansion, the terms second and higher order in x̃ are combined to form ∆g̃sing:

∆g̃sing(x̃, T̃ ) = ∆g̃(x̃, T̃ )−∆g̃(x̃ = 1, T̃ )−
∂

∂x̃
(∆g̃)

∣∣∣
x̃=1

(x̃− 1). (14)

The crossover procedure described in the next section is applied to ∆g̃sing.

5. RENORMALIZED MOLAR GIBBS FREE-ENERGY OF MIXING

The classical molar Gibbs free-energy of mixing ∆g̃ has to be transformed close

to the critical point to take into account the effects of critical fluctuations. One such

transformation has been developed by Chen et al. [9] for the Helmholtz free-energy

density of a one-component fluid near the vapor-liquid critical point, where the order

parameter is to be identified with the density. In incompressible liquid mixtures the

order parameter is to be identified with the concentration x and we consider the Gibbs

energy as a function of T and x as the appropriate potential

∆g̃x = ∆g̃sing(∆T̃x,∆x̃x)−
1

2
∆T̃ 2K (15)

with

∆T̃x = ∆T̃T U1/2 (16)

∆x̃x = ∆x̃D1/2U1/4 (17)

The rescaling functions T ,D,U and K in these transformations are defined as:

T = Y
2ν−1
νω , U = Y

1
ω ,

D = Y
−η
ω , K =

ν

αūΛ

(
Y −

α
νω − 1

)
, (18)
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where α, η, ν, and ω are critical exponents. The exponents β and γ in Eqs. (3) and (5)

are related to the above set of exponents through the exponent relations γ = (2−η) ·ν

and α+ 2β + γ = 2 [2, 16]. The function Y in Eq. (18) is a crossover function, which

is defined implicitly as:

1− (1− ū)Y = ū

[
1 +

(
Λ

κ

)2
] 1

2

Y
1
ω . (19)

The variable κ2, defined by

κ2 =

(
∂2∆g̃

∂∆x̃2

)
P,T

(∆T̃ = ∆T̃x,∆x̃ = ∆x̃x)Y
1

2ω (20)

serves as a measure of the distance from the critical point. The expression for κ2 can

also be written in terms of ∆g̃ with the aid of Eq. (4). As κ2 → 0, Y → 0 and

one recovers from Eq. (15) the universal scaled asymptotic critical behavior [13]. As

κ2 → ∞, Y → 1, and ∆g̃x reduces to ∆g̃ the classical free-energy of mixing. The

crossover behavior of ∆g̃x is governed by two system-dependent constants ū and Λ.

The inverse ”length” Λ reflects the discrete structure of matter and ū is an effective

coupling constant.

6. RESULTS AND DISCUSSION

We now demonstrate the applicability of the renormalized NRTL equation to a

simple liquid-liquid system with both molecules of approximately the same size. One

such system that has been studied close to the consolute point is n-heptane + acetic

anhydride. Nagarajan et al. [17] have measured the coexistence curve of the above

system by observing the transition temperature of 76 samples over a wide range of

compositions. The coexistence data when plotted as mole fraction versus temperature

seem to be more symmetric than when plotted as volume fraction versus temperature.

The value of the critical parameters as measured by Nagarajan et al. [17] are Tc =

341.658 K. (when converted into ITS-90) and xc(n-heptane) = 0.4707. Even though the
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authors have taken into account the effects of gravity in the experimental data, Vnuk

[18] has found some inconsistency in the data close to critical point. He attributes

this inconsistency to gravity effects. In the present analysis of the experimental data

a similar inconsistency was noted. In fitting the renormalized NRTL model we have

kept the values

Tc = 341.658 K, xc(n-heptane) = 0.4707, (21)

as determined by Nagarajan et al., but we omitted data points between Tc and 341.258

K.

The optimized NRTL parameters, crossover parameters, along with critical expo-

nents that are used in our analysis are listed in Table I. The non-randomness parameter

α12 is fixed at 0.2 . Figure 1 shows a comparison of the phase boundary calculated

from the renormalized NRTL equation with the experimental data. In this figure the

calculated phase boundary of the classical NRTL equation is also shown. The parame-

ters of the classical NRTL equation have been determined from the experimental data

far away from the consolute point. For α12=0.2 the parameters are found to depend

on temperature as:

g12 − g22 = 2.092T + 4.7554,

g21 − g11 = −6.2T + 3136.7. (22)

The calculated classical critical parameters are T0 = 360.658 K and x0 = 0.4845. In

Fig. 2 log(x
′′
− x

′
) is shown as a function of ∆T̃ . Asymptotically close to the critical

point we recover the power law given by Eq. (3) with β=0.325 and B = 1.8. This

value of B is comparable to the value B = 1.85 found by Nagarajan et al. [17] from

an asymptotic scaling analysis.
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7. CONCLUSIONS

A procedure for transforming Gibbs energy models to reproduce the universal scal-

ing behavior in the vicinity of the critical point is presented. This illustrates how the

crossover procedure can be extended to an isobaric incompressible liquid-liquid system

which belongs to the universality class of the 3-dimensional Ising model. Even though

we have applied the procedure to a molecular mixture of approximately the same size,

it can be extended to molecular mixtures of different sizes. This can be done by mix-

ing of the field variables ∆T̃ and ∆µ̃ = µ̃(T̃ ) − µ̃(xc, T̃ ). For systems with molecules

of very different sizes, the volume fraction is a better choice of order parameter than

the mole fraction. Hence, it is advantageous to develop classical Gibbs energy models

in terms of volume fraction. For practical applications, it is also possible to predict

caloric properties like hE and CE
p along isotherms and Cp,x along constant composi-

tions from the NRTL model. Simultaneous prediction of both the phase boundary and

the calorific properties is also possible with our transformed NRTL model. Further

research towards these goals is in progress.
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Table I. Parameters and Constants in the Renormalized NRTL Equation.

Universal critical exponents

α=0.110 η=0.0333 ν=0.630 ω=0.80952

Critical parameters

Tc = 341.658 K xc(n-heptane)=0.4707

Crossover parameters

ū = 0.5546 Λ = 1.0302

NRTL parameters

ã = 1.347424 b̃ = 3.982667 c̃ = 0.944626 d̃ = 1.973628
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Figure captions

Fig. 1. Coexistence curve for the system n-heptane + acetic anhydride at con-

stant pressure. The circles ◦ indicate experimental phase boundary data, the solid

curve represents the phase-boundary calculated from the transformed NRTL equation

and the dashed curve represents the phase boundary calculated from the original clas-

sical NRTL equation. • indicates the classical critical point and 3 indicates the actual

critical point.

Fig. 2. Log-log plot of the concentration difference x
′′
− x

′
in the two phases as

a function of ∆T = (T − Tc)/Tc. The curve represents the values calculated from the

renormalized Gibbs energy model.

12



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

310

320

330

340

350

360

370

Mole fraction of  n-heptane

T
em

pe
ra

tu
re

  (
K

)
n-heptane + acetic anhydride



10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
1

∆ T

 x
′ ′

 -
 x

′  
n-heptane + acetic anhydride


